
Measuring kernel throughput on Blue Gene/P

with the Plan 9 research operating system ∗†

Ronald G. Minnich and John Floren
Sandia National Labs

Aki Nyrhinen
University of Helsinki, Department of Computer Science

October 12, 2009

Abstract

We have ported the Plan 9 research operating system to the IBM Blue
Gene/L and /P series machines. Part of our research is to answer the
following question: can a full-featured operating system like Plan 9 equal
the performance of a lightweight kernel such as IBM’s Compute Node
Kernel (CNK)? We expected the CNK to provide better performance than
Plan 9 in several areas, e.g., CNK supports 1 Mbyte pages and Plan 9
only uses 4096 byte pages. This page-size difference will, in turn, result in
better performance for applications which have highly non-local memory
reference patterns.

It is critical that we be able to finely measure kernel performance.
While such systems are taken for granted in the Unix world, to date, Plan
9 has only supported a profiling interface, not a tracing interface. Profiling
interfaces can provide gross information about “where the time is spent”
across all processes using the machine. In essence, a profiling interface
removes all time and call tree information, providing only a summary.
A tracing interface is able, for a given process, to show exactly what
functions called each other, and when.

We have created a Plan 9 trace device, devtrace, which can be used
to selectively trace functions and processes in Plan 9. Users can enable a
range of functions to be traced, observe which of the functions are called, in
what order, what their parameters are, and the time spent (in CPU ticks)
in each function. We have devloped a set of tools for plotting this data to

∗
†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Adminis-
tration under contract DEAC0494AL85000. SAND-2008-4108-P. This research used resources
of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under contract DE-
AC02-06CH11357.

1



make the progression and timing of function calls clear. Since all Plan 9
file systems are user level processes, it is possible to trace a single process
file I/O as it progresses from the process, through the file server processes,
and to disk. This measurement, in turn, allows us to propose changes in
the Plan 9 kernel design and implementation to improve performance.

We have used this device to quantify the advantage of our 1M page
implementation in Plan 9. We are further using it to optimize the I/O
path from process to network.

The implementation of the trace device went through several distinct
phases. In the end, we arrived at a device with a textual interface. Users
need not write programs to use the trace facility. The trace device does
not rewrite kernel code and hence does not require priveleged access (as
in Linux or Solaris). Any user of a Plan 9 system can easily measure their
system’s performance.

1 Introduction

This project started out as a simple question: where is the time going in Plan
9, and why? Our primary use of Plan 9 is in High Performance Computing
(HPC) systems, in which overall throughput can depend on very small overheads
that don’t much matter in desktop systems. Isolating problem overheads and
removing them is a very common activity in HPC.

Plan 9 is a very small, tightly crafted operating system. It has only 40 or
so system calls. A given file system IO call will result in a call stack that is
only a few levels deep, as opposed to the (literally) dozens of call levels found
in, e.g., a Linux NFS I/O. Modifying Plan 9 system calls in simple ways is a
far less daunting task than on other operating systems. Also, Plan 9 is very
modular; the boundaries between components are well-defined and adhered to,
with very little of the shared state that characterises most operating systems.
This separation enables the inclusion of changes as long as they do not break
the interfaces. Hence, it is very likely that, given the discovery of a major
overhead that might be avoided by a straightforward redesign, the redesign can
be incorporated in the kernel.

To give some flavor of what the trace device allows, we show a real trace in
Figure 1. The data and plot were created using devtrace and a script processing
pipeline. The trace shows the kernel functions called by an ’echo’ command.
The X axis is the time in processor ticks; the Y axis is each kernel function, by
name. For readability, we have filtered out all kernel functions that take less than
50,000 ticks. The red line marks the time a function is entered until the time
it exits. The calling hierarchy can be determined by seeing what lines overlap
other lines. For example, we can see that the syspwrite function calls pwrite,
as they cover the same part of the X axis, and syspwrite is wider. Functions
called multiple times would appear multiple times on this graph (they have been
filtered out for readability).

As with most Plan 9 devices, the interface to devtrace is textual. There are
two files: tracectl and trace. The tracectl file is used to both query the trace



poolallocl
poolalloc

smalloc
ptealloc

pio
fixfault

fault
faultamd64

trap
trim

memmove
copypage
duppage
i8250kick

uartkick
i8250interrupt

mallocz
poolmsize

msize
_allocb
allocb
qwrite

putstrn0
write

syspwrite
syscall

validname0
validnamedup
_fmtdispatch

dofmt
vsnprint

sprint
newpath
poolfreel
poolfree

free
devattach

kstrdup
growparse

parsename
devgen

devwalk
ewalk

copypath
uniquepath

addelem
pathclose
chanfree

cclose
walk

devopen
namec

sysopen
snprint

read
syspread

fdclose
sysclose
closefgrp
closergrp

_strfmt
freepte
putseg

’plotme’ using 1:2:3:ytic(5):xtic(1)

Figure 1: A sample trace output with tracedev. The X axis is in units of
processor ticks.



Stride CNK Plan9 Plan 9 (1MB page)
1 3.7539700e-01 3.8000000e-01 3.7000000e-01

101 3.7721600e-01 1.6400000e+00 3.8000000e-01
201 3.7926300e-01 3.4000000e+00 3.8000000e-01
301 3.8119100e-01 4.9100000e+00 3.8000000e-01
401 3.8263600e-01 6.3300000e+00 3.8000000e-01
501 3.8444400e-01 7.7600000e+00 3.9000000e-01
601 3.8661300e-01 7.7700000e+00 3.9000000e-01
701 3.8841900e-01 7.7600000e+00 3.9000000e-01
801 3.8986500e-01 7.7600000e+00 3.9000000e-01
901 3.9227500e-01 7.7700000e+00 3.9000000e-01
1001 3.9444300e-01 1.1750000e+01 4.0000000e-01

Figure 2: Comparative performance of: CNK; Plan 9 with 4K pages; Plan 9
with 1 MB pages. Even with tracing on, Plan 9 is sometimes faster.

device and control its actions; the trace file is used to read trace records.

Example usage

We wanted to measure the performance of SAXPY on the Blue Gene/P (BG/P)
system at Argonne, on both the CNK and Plan 9 kernels. We used the strid3
benchmark from Lawrence Livermore National Labs. Strid3 does multiple SAXPY
operations, with different strides each time. The benchmark “is designed to
severely stress the memory subsystem on a node ...utilize[s] combinations of
loops of scalar and vector operations and measure[s] the MFLOP rate deliv-
ered as a function of the memory access patterns and length of vector utilized”.
Strid3 was of particular interest as it can expose problems with both TLB and
cache because, at larger strides, it can invalidate both the TLB entry and a
cacheline for each memory reference. Relative performance is shown in Figure
2; we use the time trace output from strid3.

The initial results were not encouraging: as the strides grew larger, runs
under Plan 9 showed a factor of 30 penalty over CNK. We suspected that the
problem was our use of 4096-byte TLBs as opposed to the CNK’s use of 1 Mbyte
TLBs. To get some idea of the number of faults for strid3, we counted them.

To count the faults we had to set up a trace for the faultpower function
in the kernel, which is always called on a TLB miss. Using nm we obtain the
address range of faultpower and execute the following command:

cpu% echo trace 0xf00049f4 0xf0004b38 new faults > /dev/tracectl

This command creates a new trace, called faults, which covers the range selected
by the two numbers.

Traces are not enabled by default. We can create any number of traces, and
have them enabled and disabled independently. To enable a trace:



echo trace faults on > /dev/tracectl

We also have to actually enable the trace device itself, with the start command:

echo start > /dev/tracectl

This setup is very similar to a logic analyzer setup. We create the triggers,
enable some of them, then start the logic analyzer. After the strid3 run, we can
see how many page faults occurred:

cat /dev/tracectl

which shows:

logsize 16
trace f0004944 f0004a88 new fault
#trace f0004944 traced? f16a33d0
trace fault on
#tracehits 863700, in queue 863700
#tracelog f1909d90
#traceactive 0
#slothits 293803185
#traceinhits 131995046
watch 0

This output, as for most plan 9 devices, consists of a valid set of commands and
comments (comments start with a #). The output can be used as input to the
device. It is very easy to save the output and, later, rerun the trace.

We discuss the commands later in this paper; for now, the main item of
interest is ’traceinhits’, i.e. the number of times we had a hit on an active trace.
It shows that strid3 took 132 million TLB miss faults. It’s certainly reasonable
to guess that we might improve performance by reducing the number of faults.

To do so, we need to implement one Mbyte TLB entries, a.k.a. “huge pages”.
The way in which we implement this change is grist for another paper, but we
can say that the careful addition of 12 lines of code is sufficient to add them.
We perform the run again, with much better results.

We can get immediate confirmation of this improvement from the trace out-
put:

logsize 13
trace f00049f4 f0004b38 new fault
#trace f00049f4 traced? f169d4f0
trace fault on
#tracehits 9918, in queue 9917
#tracelog f1894440
#traceactive 0
#slothits 18639
#traceinhits 9535
watch 0



E ffffffff8011aa68 000088297eecd2e7 000000000000023c 00000000000007be
ffffffff81accb78 ffffffff81a4d2a8 ffffffff0000000a
X ffffffff8011aac7 000088297eecd445 000000000000023c ffffffff801abc78
0000000000000000 0000000000000000 0000000000000000

Figure 3: Data output from /dev/trace

We can see a 10,000-fold reduction in the number of calls to faultpower. The dra-
matic improvement in strid3 can be traced to this reduction. On an application-
by-application basis, we are using devtrace to wring out the performance is-
sues in Plan 9 so that this full-featured kernel can equal the performance of a
lightweight kernel.

For this case, there was no need to look at the actual trace records them-
selves. We will describe the format here in brief. The trace records are also
text, which facilitates cross-platform processing of the data: this interface is
inherently heterogeneous.

To read the trace records, we type:

cat /dev/trace

and can see the records shown in Figure 3.
Figure 3shows two lines of output from the trace device. The format of the

line is:

• E or X indicating entry or exit

• The PC

• The processor time stamp counter, 64 bits

• The process ID

• E records: the first four arguments1; X records: the return value

The rest of this paper is structured as follows: first, we provide an overview
of related work; then we describe the current implementation and the post-
processing tools that we have developed to analyze the traces. Finally, we close
with a description of future work.

2 Related work

There have been many implementations of kernel tracing facilities over the years.
Trace systems generally have one of three goals: debugging, which requires a
tremendous amount of flexibility; tracing calls and times, which requires record-
ing function invocation, arguments, and timing; and profiling, which requires

1If the function takes fewer than four arguments the extraneous argument values are invalid
and should be ignored.



only recording the function start address and time spent in that function, which
is accumulated in a histogram (i.e. time for individual function calls are lost;
only the total time spent in each function is recorded). There are common
techniques for implementing a trace system, namely:

1. rewrite-based (a.k.a. self-modifying code). A program or driver sets a
breakpoint or a jump by actually rewriting part of the kernel text. The
kernel manages the breakpoint or jump by calling a specified function.
The function can be pre-defined and the same for all traces, or arbitrary
and specified when the trace is created.

2. code-based. Programmers insert a call to a logging function at various
places in the code at compile time.

3. automated. This technique is a variation on code-based. As part of the
kernel build process, the compiler or linker generates code that calls a
function for each function entry and exit.

4. hardware. Code is instrumented by hardware using special-purpose at-
tached I/O devices or logic analyzers 3. This technique often requires
some form of code-based support to write tags to the hardware at the
proper points.

2.1 Rewrite-based

Rewrite-based tracing replaces a portion of the kernel code with code that calls
a handler. The trace setup code allocates a buffer, saves the overwritten code in
it, and installs a jump to the code buffer in place of the overwritten code. The
buffer contains overwritten code, a call to the trace support code, and code that
resumes the function. A corresponding code buffer is created for function exit.
The handler can be a user-provided function, sometimes called “trigger code”.
Typically, trigger code logs the event and variables of interest, which are almost
always the parameters to the function.

The code that is written over can be replaced with a breakpoint instruction
or a jump instruction. Kprobes(2), in the Linux kernel, is breakpoint-based;
djprobes is jump-based – although as part of the installation process, djprobes
begins by inserting breakpoints. Breakpoints have the advantage of being small,
usually one byte; they have the disadvantage of high cost in time, since a break-
point requires interrupt handling.

In some of these systems, a pre-written function is called; in others, users
tracing kernel code must write a complete kernel module containing the trigger
code functions. The trigger code can be used for more than one traced function
but must be able to disambiguate the multiple callers - i.e., function exit and
entry, or different functions. In Kprobes, DJprobes, and many other systems,
the user must write a module that explicitly names the functions to be traced,
when the trace module is compiled. Further, users wishing to export the data
from the trigger code to user mode must write additional code to move the data



to another kernel subsystem (e.g. relayfs, now known as relay), from which the
user program can extract it from the kernel. Kprobes supports the tracing, but
not the data transport.

As might be expected, supporting self-modifying code is a very complicated
process, when all the possible execution paths are taken into account. Multipro-
cessor machines further add a host of difficulties. The code may be rewritten
in one processor, but we have no guarantee of when or if other processors will
see the changes – or, still worse, see some but not all of the rewritten memory,
as pointed out in (4). Further the task of moving code so as to redirect it
requires that we determine if the execution of an arbitrary piece of code will
ever terminate; is it ever safe to remove a probe?

2.1.1 dtrace

This section would be incomplete without a reference to Sun’s dtrace(1), possi-
bly the most sophisticated rewrite-based system, and certainly the standard by
which all other kernel trace tools are measured. Dtrace is a debugging oriented
tool, and hence has a great deal of flexibility. Dtrace can set a probe point on
any of tens of thousands of places in the Solaris kernel. The trace points can run
always installed, since their cost when not activated is zero. Unlike most other
Linux or Unix trace systems, dtrace provides a rich support system for naming
probes, acquiring the data created when probes are triggered, and processing
the data to simplify analysis. Dtrace supports both so-called “static tracing”,
essentially a code-based tracing mechanism, and a “function boundary” tracing
mechanism, implemented with the same technique as DKM: relying on the fact
that function entry and exit have a characteristic set of location-independent
instructions. Dtrace replaces one instruction with a TRAP instruction, and,
rather than executing the written over code, emulates it in software. Conse-
quently, the cost of executing a dtrace trigger code is fairly high. Dtrace shares
the problem of most code rewriting strategies, in that the kernel code can be in
an invalid state while the rewrite is being done.

2.1.2 Performance issues with code rewrite tracing

As we can see, code rewriting is complex and has a number of non-obvious costs:

• making sure no processors are executing code that is being rewritten

• making sure all processors see the changes once they are finished

• executing the code that has been moved

• managing the problems that can occur when arbitrary code has been
moved to another location.

One additional concern that is not immediately obvious, for performance mea-
surement, is the differential cost of executing a function when it is traced. Con-
sider the case when non-traced functions, in a tracing-enable kernel, see no



performance penalty. Those functions that are traced will appear to have a
much higher comparative cost than they do in reality. If we measure, e.g., the
performance of a program that uses non-traced functions, we will artificially
inflate the cost of a program that uses traced functions.

In contrast, in the Plan 9 trace device, the time to run all functions is
uniformly increased whether they are traced or not. As a result there is a
closer correspondence between the time to execute two functions, and hence
two programs which use those functions, even if one is set up to be traced and
one is not. In short, a zero cost penalty for non-traced functions could lead
users to attribute a higher time cost to traced functions than is in fact the case.

2.2 Code-based

Code-based systems have been around for some time. A more recent version of
code-based tracing is Linux kernel markers. Programmers insert “markers” at
points of interest in the kernel source, e.g.:

trace mark(blk request, “count is %d”, count);
The markers are disabled by default. They are enabled by calling a function

which names the marker, and contains a function pointer and a pointer to private
data. The function will be called when the marker is hit, with the data passed
to it. In order for kernel markers to become generally useful, large parts of the
kernel – all 50 Mbytes of it – need to have kernel markers added. Adding this
additional code to the kernel is quite a major effort and will take some time. As
of 2.6.25, only four markers have been created.

2.3 Automated trace

In an automated trace system, the kernel or the linker generates the trace sup-
port code via a build-time command. An example is the Plan 9 kernel profiling
facility, which is invoked from the Plan 9 linker. The linker in Plan 9 is capable
of inserting code or optimizing code away – in fact, it shares code generation
responsibilities with the compiler. When it is invoked with a -p switch, the Plan
9 linker inserts a call to profin at the entry point of the function, and a call
to profout at each exit. The profiling library is also linked in as part of this
process. The only information passed to and used in the profiling functions is
the program counter. The counter is used to create a histogram of time spent in
functions. Relationships between functions, and time for certain types of calls,
is not collected.

2.4 Data extraction and analysis

As mentioned above, tracing is only part of the problem. Once the trace function
has been activated, it must produce information and deliver it to a consumer.
The simplest consumer is the kernel system log. Data is produced for the log
by a print function. The bandwidth provided by the log, and the performance
impact of using it, are such that it is rarely used: it is very easy to create so



much data from printing that it is overrun and lost. Instead, the trace facility
can provide a way to provide data for user-level consumers, as in dtrace; or,
the trace facility might require that users set up the means by which data is
delivered to consumers, as in kprobes, djprobes, and other systems.

Another issue concerns the format of the data. Kprobes, djprobes, and
kernel markers all allow unrestricted creation of data streams, both in content
and record size. While a lack of restrictions might seem desirable, it can be
difficult for programs to parse all the possible variations of data output – this
same problem has been seen and documented for, e.g., /proc (5). The four
markers present in 2.6.25 have this format:

”name %s format %s”
”name %s format %s”,
”ctx %p spu %p”,
”ctx %p”,
This problem has been dealt with before, and it is easy to solve: if the data

size and content are arbitrary, then the format should be in a self-describing,
self-contained format, e.g. s-expressions as defined in (5). A self-describing
format has many advantages, not the least being that output from multiple sets
of markers can easily be processed by a program which is only processing a
subset of the markers. Programs need not concern themselves with all possible
marker formats, since the self-describing structure of the data makes it easy to
skip markers that are not of interest. Data can be saved and resurrected years
later, and the structure of the data is readily apparent.

Dtrace, and our Plan 9 trace device (devtrace) opt for a fixed-format, fixed-
size data format, for reasons of processing complexity and overhead. Devtrace
also fixes the content of the data: a function entry/exit tag; a cycle counter
(processor clock); the program counter; and the first four parameters (entry) or
the return value (exit) of the function. Dtrace has a bit more flexibility but also
has a fixed record size.

2.5 Summary

We have only touched upon a small fraction of the many available tracing facil-
ities. Tracing facilities have been developed over at least the last four decades;
we focus mainly on the Linux systems as they are the most likely to be familiar
to the reader. The systems vary little in their implementation; some are dy-
namic, and installed by code rewrite; others are written into the kernel as code
by programmers; still others are inserted automatically into the kernel by the
compilation toolchain.

The system we have built for Plan 9 (devtrace) is based on the automatic
approach. We build the kernel with profiling enabled but replace the normal
profiling functions. Our trace functions allow users to conditionally enable both
individual functions and individual processes. We can trace file I/O calls from an
editor to the file server and back. The control of which functions and processes
to trace is accomplished by writing textual commands to a control file. We now
describe this system in more detail.



3 The Plan 9 trace device

The Plan 9 trace device is an automated trace device that does not use code
rewriting. To use it, programmers add the -p switch to the Plan 9 linker com-
mand for the kernel, and also link in two additional files: the C code for the trace
device itself and the assembly code that implements and replaces the standard
profin and profout functions. The assembly code is needed to ensure that the

interposed profiling calls do not interfere with argument or return values.
The profin and profout assembly code is limited to the minimal support

needed on a per-architecture basis. The functions test to see if tracing is globally
enabled and, if so, push the first four args (on entry) or the return value (on
exit) and call C functions named tracein and traceout. The main modification
from the standard functions is in the provision of the additional information.

The C code implements the rest of the tracedev functionality and, again,
provides a device interface for controlling the device, determining status, and
reading the data. In the Plan 9 manner, the device supports two files: ctl and
data.

Data file

The data file is read-only and returns trace records as text.

Ctl file

The ctl file, when read, returns information about the state of the device. As in
many Plan 9 devices, strings read from the ctl file contain valid commands; the
output of the ctl file can be saved and written back to the ctl file. The main use
of the ctl file is to control tracing. Programs, scripts, or users echo commands
into the file. The commands are shown in Table 1.

This set of operations allows tracing some or all of the kernel. We can restrict
the set of functions traced, as well as the set of processes traced. We can follow
a write system call from a process to the file system server, its archival backup,
and from there to the main disk drive. We can look at the sizes of writes and
determine where the bottlenecks are in the I/O system. Most importantly, by
design, the overhead is uniform – not low, however, but uniform, so that the
cost of functions relative to each other is roughly the same, traced or untraced.

3.0.1 The difficulties of simplicity

As we have noted, the trace device interface and the device itself are small:
the C code is 800 lines, or roughly 1/3 the size of the Linux kprobes code; the
assembly is less than 50 lines. The device described is the result of several
iterations, not on just Plan 9, but on Linux. We started with a complex device
that rewrote kernel code. The complexity of that code, comparable in scope to
kprobes or djprobes, led us to look for a better and simpler (albeit less capable)
design. Our work paid off: it took two hours to port the trace device from the
AMD 64 kernel to the BG/P kernel.



Command parameters description
trace <start-address>

<end-address>
new <name>

Creates a new trace. trace
<name>. The trace is set up

but not enabled. Large batches
of traces can be set up and

enabled later.
trace <name>

remove
removes the trace named

<name>
trace <name> on enables the trace named

<name>
trace <name> off disables the trace named

<name>
size <size log 2> resizes the kernel-based trace

buffer to 2size records
query <address> determines if the given address is

traced. Useful for testing.
testtracein <addr>

<arg1> <arg2>
<arg3> <arg4>

simulates entry into traced code.
Useful for testing both the
device and programs that

process the data.
watch <pid> enables tracing on a process id

(PID)-specific basis and further
enables tracing on that one PID

only.
start enables tracing globally (the flag

is tested in profin/ profout
assembly code)

stop disables tracing globally (the flag
is tested in profin/ profout

assembly code)

Table 1: Trace device commands



tcfd = open("/dev/tracectl", ORDWR); /* open the trace device */
tree = open("/dev/vc0net", ORDWR); /* open the tree network */
m = smprint("watch %d", getpid()); /* command to watch ourselves */
write(tcfd, m, strlen(m)); /* write watch self command */
write(tcfd, "start", 5); /* start tracing */
write(tree, "hi", 2); /* do tree I/O */
write(tcfd, "stop", 4); /* stop tracing */

Figure 4: The test program

One of our goals is to make the trace data easily accessible to users. Linux
has done an impressive job in this area with tools such as SystemTap. But,
in the end, the Linux tools are very complex systems that are put in place to
control other very complex systems. Using the raw interface of kprobes is a
daunting task, requiring a lot of knowledge of the users. SystemTap eases the
pain, but at the cost of comprehension when things do not go as planned.

In contrast, tracedev follows the Plan 9 path of a simple, regular device
interface that can be directly used – even from the shell or command line. We
regularly control tracedev by echoing commands into the ctl file and using cat
to read the data file. The power of this interface is hard to overstate. Any tool
that can process textual data can pull data from the trace device and process
it. A non-expert can easily use tracedev to monitor Plan 9.

4 Use cases

In this section we discuss the processing pipeline which produced the graph in
Figure 1. We also show a quick analysis of IO sizes for an interactive Plan
9 session and an answer to two questions: “What addresses are used when a
process communicates with the kernel? Can we cache translations to speed up
system calls?”.

4.1 Example 2: how long does it take to get from a process
to an I/O device?

We wish to know how long it takes a process to write to an I/O device, as we
need to reduce this time to be competitive with MPI. The test program is shown
in Figure 4. The simplicity should be apparent: open a control file and device;
write commands to watch the process and then start the trace run; write to the
tree; stop tracing.

The results are shown below. The write is currently not nearly fast enough;
the writes hit the wire at the beginning of txstart, which on close inspection is
almost 90,000 ticks in. That said, we do hit the treewrite function at only a few
thousand ticks in; the opportunities for optimization are pretty obvious.



decrefcclosememmovesegokaddrvalidaddrincreffdtochanplockdsize2bsizetreelookupgtltreewalklistdeletetreedeletepooldelblocksetdsizetrimB2DpoolalloclpunlockpoolallocsetmalloctagsetrealloctagmalloczD2Bgetdsizepoolmsizemsize_allocballocbqlentxfifofullqgetmemsetblockchecklistaddtreeinsertpooladdpoolfreelpoolfreefreefreebtxstarttxkickwakeupqnotfullqbwritetreenetsendtreewritewritesyspwritesyscalltrap
1
2
6
8
1
.5

1
9
1
8
5
.5

1
9
2
9
3
.5

1
9
3
4
7
.5

2
5
2
3
9
.5

2
5
2
6
2
.5

3
5
6
0
2
.5

3
8
9
1
2
.5

4
1
2
0
3
.5

4
4
4
1
1
.5

4
6
5
3
9
.5

4
7
1
8
5
.5

4
8
8
3
4
.5

4
9
0
5
0
.5

4
9
2
9
1
.5

4
9
3
1
2
.5

5
0
7
7
7
.5

5
3
5
8
7
.5

5
5
2
8
2
.5

5
6
0
9
3
.5

5
6
1
4
1
.5

5
9
5
0
0
.5

5
9
8
4
9
.5

6
0
8
8
0

6
2
2
8
6
.5

6
5
4
4
0
.5

6
7
4
2
5
.5

7
3
9
4
5
.5

7
7
4
3
1
.5

7
8
4
5
5
.5

7
8
4
8
9
.5

7
9
3
5
7
.5

8
1
7
8
7
.5

8
1
8
0
4
.5

8
4
4
5
2
.5

8
9
4
4
3

9
0
0
7
6
.5

9
0
0
8
5
.5

9
1
2
4
7
.5

9
1
2
9
4
.5

9
3
0
6
9
.5

9
5
2
3
2
.5

1
0
2
5
2
6

1
0
4
7
8
4

1
0
7
4
6
6

1
1
0
2
0
6

1
1
2
4
2
0

1
1
9
2
7
8

1
2
2
9
6
2

1
2
5
4
8
4

1
2
5
7
0
6

1
2
6
0
2
2

1
2
7
0
3
8

1
2
7
2
3
8

1
2
7
3
1
0

1
2
8
1
2
8

1
3
1
1
4
6

1
3
1
2
5
0

1
3
1
3
4
8

1
3
1
5
9
2

1
3
2
5
1
2

1
3
4
7
5
0

1
3
5
7
8
0

1
3
8
0
1
4

1
3
8
0
2
4

1
4
3
7
8
0

1
4
9
0
7
0

1
5
4
0
9
0

1
5
6
6
3
6

1
6
3
9
5
9

1
6
4
0
0
0

Figure 5: Results of watching tree network write



echo trace 17a099 17a0a2 new pr > /dev/tracectl
echo trace 17a2cf 17a2d8 new pw > /dev/tracectl
echo trace pr on > /dev/tracectl
echo trace pw on > /dev/tracectl

Figure 6: Command for tracing pread and pwrite

4.2 Example 3: What are typical IO sizes?

We wished to know what size I/O operations programs initiate. All I/O goes
through the pread and pwrite system calls. To get a quick idea of what might
be going on, we decided to monitor only the return values of these calls.

We set up tracing as shown in Figure 6.
The result is shown in Figure 7. Almost 90% of I/O operations are less than

1Kbyte; 1/3 are under 8 bytes. An I/O enhancement strategy designed around
these figures could greatly improve performance.

4.3 Example 4: What addresses are used when a process
communicates with the kernel? Can we cache trans-
lations to speed up system calls?

We consider the case of processes communicating with the kernel. In earlier
work, which showed us the need for the trace device, we determined that getting
user data into and out of the kernel was a costly process. A large fraction of this
time is mapping user level pointers into the kernel address space so that copying
can be done. We speculated that If we can cache frequently used mappings, we
might improve performance, particularly for read and write. For this simple
test, we measure tar cf /dev/null /sys/src.

Processes communicating with the kernel pass a user-mode virtual address to
several system calls. It would be a bit of work to set up the 20 or so triggers, but
fortunately there is a function in the kernel, okaddr, which is called to validate
user addresses. Hence we can watch the parameters to the okaddr function. The
success of a caching strategy is critically dependent on the number of different
addresses used – if the number is small enough (e.g. 32), we can easily cache
address mappings; if the number is too large (e.g. 16384) then it is unlikely that
caching is practical.

For this test, our program records the PID and the page address passed to
okaddr. We only monitor function entry.

The results shown in Table 2 indicate that we can cache as few as 32 page
address translations for a process and eliminate much of the cost of both checking
a virtual address and converting it to a physical address for kernel I/O.



Figure 7: I/O sizes for an interactive Plan 9 session on a network terminal. The
X axis is I/O size and the Y axis is a cumulative count of the number of I/Os.
Of the total of 1400 I/Os, 1380 of them were less than 500 bytes.



PID page address count PID page address count
102 4294967294 6 176 36 5
150 4294967294 6 176 37 61
176 15 63 176 38 131
176 16 4087 176 39 6
176 17 556 176 40 3
176 18 484 176 4294967294 14034
176 19 188 178 4294967292 3
176 20 254 178 4294967294 3
176 21 445 193 4294967294 3
176 22 431 199 33 3
176 23 566 199 34 2
176 24 51 199 4294967292 8
176 27 43 199 4294967294 6
176 28 264 51 1 3
176 29 201 51 10 3
176 30 104 51 18 1
176 31 121 51 19 2
176 32 166 51 38 44
176 33 68 51 4294967294 2

Table 2: kernel addresses used for tar, file server, and other server processes for
tar pipeline



Profiling level User System Real %
penalty

None 2.94 12.07 15.76 0
Included but disabled 3.87 16.34 20.24 28

Tracing I/O system calls 5.23 30.08 35.32 74
profin and profout returning

immediately
4.13 16.57 20.71 28

Table 3: Performance for various levels of tracing

5 Performance

The performance impact of any tracing system is always of concern. To test
performance, we set up a comnmand to copy data from /dev/zero to /dev/null,
on megabyte at a time, in a kernel compiled without profiling, one compiled
with profiling but with tracing turned off, and then again on the profiling ker-
nel with tracing enabled. A kernel was also compiled with profiling enabled
and the assembly-level profin and profout functions executing RET (return)
immediately upon entry. Table 3 shows the results.

There is a very clear difference in performance between each test. Simply
using a kernel compiled with tracing resulted in a 28% time increase over the
non-profiling kernel. Going from a profiling kernel with tracing disabled to a
profiling kernel tracing a section of memory gave a 74% increase in real time.
Interestingly, having profin and profout return immediately gives about the
same 28% hit as using a profiling kernel with tracing disabled; this is likely due
to the pipeline being cleared by the CALL instruction. We may need to further
modify the linker to either inline the functions or find some other way to make
profiling-disabled functions more efficient.

However, when the intended use of the the trace device is taken into ac-
count, i.e. comparative measures of internal kernel function performance, these
performance hits are not particularly problematic. Tracing is useful for gaining
an idea of which functions take longer to execute. Since tracing creates an equal
penalty for all traced functions, the ratios of execution times will still remain
the same. As the plot in Figure 1 indicates, useful information can be gleaned
without even knowing the time scales involved – it is sufficient to simply look
at the graphs and see the different lengths of function execution.

6 Performance optimization

The current design uses the Plan 9 linker to insert an always-executed call to
_profin and _profout at entry and exit points. As noted, this adds a fixed
cost of almost 28% to common kernel operations. Hence, we can not ship a
kernel with tracing always enabled, as Sun does. The question must be asked:
could we change how we enable tracing? It turns out we can, if we are willing



to consider using a rewrite-based approach. As it happens, we can make this
approach efficient, SMP-safe, and not require additional code buffers for saving
and restoring function code. We can completely eliminate the ’invalid kernel
state’ problem that the other code rewrite systems have, since the code change
is only one byte and by definition can not span cache lines.

The linker currently emits the following code, for every function:

CALL _profin(SB)

We can modify the linker to emit a slightly different sequence:

BR .+7
CALL _profin(SB)

The result would be that calls to _profin would never happen. In order to
enable the call to _profin, one would rewrite the branch (either before the
kernel is booted, or from the trace device) as follows:

BR .+2
CALL _profin(SB)

The function return case is easy: instead of

CALL _profout(SB)
RET

We have the linker emit:

RET
CALL _profout(SB)
RET

To trace-enable a return, we simple change the RET to a NOP. The cost for the
non-trace-enabled return is zero.

The only potential concern is the cost of the added branch on function entry:
every function will have an added BR .+7 as the first instruction. This seems like
it ought to slow things down. As it turns out the penalty is not nearly as bad as
we might expect. Initial benchmarks showed encouraging results. We modified
the Plan 9 loader to emit this sequence by default for profiled kernels, and a
number of use-based benchmarks showed a 3 percent overhead, and as low as
1.5 percent on an Opteron. In fact we are using this kernel almost continuously
now as the performance impact is really not noticeable.

In our implementation of a code rewrite system, unlike the others described
above (dtrace, kprobes, djprobes), the kernel code is never in an invalid state: it
transitions from one valid state to another. There is no need for an external code
buffer, multiprocessor synchronization as the probes are installed and removed,
or all the other complex overhead of the other rewrite systems. This design
represents a substantial improvement over other trace devices, combining the
best attributes of most of them: minimal overhead when not enabled; no invalid
kernel state; and low cost for inserting a probe



7 Conclusions and future work.

We have shown a kernel device for measuring Plan 9 kernel overhead on the
IBM BG/P supercomputer. The device, devtrace, follows the Plan 9 model of
providing a simple, textual control interface that requires no C code or even
programming on the user’s part. It differs from other efforts in that it does
not use complexity to hide complexity; rather, it is a very simple device. We
showed two possible implementations. The first requires no self-modifying code
as many other trace devices do. It does extract a high performance penalty,
however. The second implementation extracts a very low penalty. The second
does require self-modifying code, but not the unsafe self-modifying code used
in, e.g., Kprobes or DJProbes: the kernel code never makes a transition from
valid to invalid to valid, but rather only makes a transition between two valid
states.

We showed a number of uses of the trace device, including system call latency
measurement, overhead measurement, and I/O size measurement. Finally, we
showed that the kernel could implement a cache for virtual addresses that would
be effective with as few as 32 entries. The I/O size measurements and the virtual
address measurement point to ways to greatly improve I/O performance while
maintaing the Plan 9 I/O model.

This work has relevance to other operating systems as well. We could mod-
ify other compilers, such as gcc, to emit the performance-optimized trace calls
shown above. It would be easy to have gcc generate the instrumentation for a
Linux kernel. In some ways the gcc work would be easier; we would not need to
write the assembly code interface, but could, rather, have gcc generate it.

Future work includes improving the display of results, as well as providing a
more automated interface.

References

[1] B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal, Dynamic instrumentation
of production systems, 2004, pp. 15–28 (English).

[2] R. Krishnakumar, Kernel korner: kprobes-a kernel debugger, Linux J. 2005
(2005), no. 133.

[3] Andrew McRae, Hardware profiling of kernels, or: How to look under the
hood while the engine is running, (1993).

[4] Satoshi Oshima, Djprobes status.

[5] Matthew J. Sottile and Ronald G. Minnich, Supermon: A high-speed cluster
monitoring system, CLUSTER ’02: Proceedings of the IEEE International
Conference on Cluster Computing (Washington, DC, USA), IEEE Computer
Society, 2002, p. 39.


