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Abstract

We have ported the Plan 9 research operating system to the IBM Blue
Gene/L and /P series machines. In contrast to 20 years of tradition in
High Performance Computing (HPC), we require that programs access
network interfaces via the kernel, rather than the more traditional (for
HPC) OS bypass.

In this paper we discuss our research in modifying Plan 9 to support
sub-microsecond ”bits to the wire” (BTW) performance. Rather than
taking the traditional approach of radical optimization of the operating
system at every level, we apply a mathematical technique known as Cur-
rying, or pre-evaluation of functions with constant parameters; and add a
new capability to Plan 9, namely, process-private system calls. Currying
provides a technique for creating new functions in the kernel; process-
private system calls allow us to link those new functions to individual
processes.

1 Introduction

We have ported the Plan 9 research operating system to the IBM Blue Gene/L
and /P series machines. Our research goals in this work are aimed at rethinking
how HPC systems software is structured. One of our goals is to re-examine and,
if possible, remove the use of OS bypass in HPC systems.

OS bypass is a software technique in which the application, not the operating
sytem kernel, controls the network interface. The kernel driver is disabled, or, in
some cases, removed; the functions of the driver are replaced by an application
or library. All HPC systems in the ”Top 50”, and in fact most HPC systems
in the Top 500, use OS bypass. As the name implies, the OS is completely
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bypassed; packets move only at the direction of the application. This mode of
operation is a lot like the very earliest days of computers, where not a bit of I/O
moved unless the application directly tickled a bit of hardware. It involves the
application (or libraries) in the lowest possible level of hardware manipulation,
and even requires application libraries to replicate much of the operating systems
capabilities in networking, but the gains are seen as worth the cost.

One of the questions we wish to answer: is OS bypass still needed, or might
it be an anachronism driven by outdated ideas about the cost of using the
kernel for I/O? The answer depends on measurement. There is not much doubt
about the kernel’s ability to move data at the maximum rate the network will
support; most of the questions have concerned the amount of time it takes to
get a message from the application to the network hardware. So-called short
message performance is crucial to many applications.

HPC network software performance is frequently characterized in terms of
”bits to the wire” (BTW) and ”ping-pong latency”. Bits to The Wire is a
measure of how long it takes, from the time an application initiates network
I/O, for the bits to appear on the physical wire. Ping-pong latency is time it
take a program to send a very small packet (ideally, one bit) from one node to
another, and get a response (usually also a bit). These numbers are important
as they greatly impact the performance of collectives (such as a global sum),
and collectives in turn can dominate application performance [2] [4] In an ideal
world, ping-pong latency is four times the ”bits to the wire” number. Some
vendors claim to have hit the magical 1 microsecond ping-pong number, but a
more typical number is 2-3 microseconds, with a measured BTW number of 700
nanoseconds. However, these numbers always require dedicated hosts, devices
controlled by the application directly, no other network activity, and very tight
polling loops. The HPC systems are turned into dedicated network benchmark
devices.

A problem with OS bypass is that the HPC network becomes a single-user
device. Because one application owns the network, that network becomes un-
usable to any other program. This exclusivity requires, in turn, that all HPC
systems be provisioned with several networks, increasing cost and decreasing re-
liability. While the reduction in reliability it not obvious, one must consider that
the two networks are not redundant; they are both needed for the application
to run. A failure in either network aborts the application.

By providing the network to programs as a kernel device, rather than a
set of raw registers, we are making HPC usable to more than just specialized
programs. For instance, the global barrier on the Blue Gene systems is normally
only available to programs that link in the (huge) Deep Computing Messaging
Facility (DCMF) library or the MPI libraries1, which in turn link in the DCMF.
Any program which wishes to use the HPC network must be written as an MPI
application. This requirement leads to some real problems: what if we want
the shell to use the HPC network? Shells are not MPI applications; it makes

1MPI libraries are typically much larger than the Plan 9 kernel; indeed, the configure script
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no sense whatsoever to turn the shell into an MPI application, as it has uses
outside of MPI, such as starting MPI applications!

On Plan 9 we make the global barrier available as a kernel device, with
a simple read/write interface, so it is even accessible to shell scripts. For ex-
ample, to synchronize all our boot-time scripts, we can simply put echo 1 >

/dev/gib0barrier in the script. The network hardware becomes accessible to
any program that can open a file, not just specialized HPC programs.

Making network resources available as kernel-based files makes them more
accessible to all programs. Seperating the implementation from the usage re-
duces the chance that simple application bugs will lock up the network. Inter-
rupts, errors, resources conflicts, and sharing can be managed by the kernel.
That is why it is there in the first place. The only reason to use OS bypass is
the presumed cost of asking the kernel to perform network I/O.

One might think that the Plan 9 drivers, in order to equal the performance
of OS bypass, need to impose a very low overhead – in fact, no overhead at
all: how can a code path that goes through the kernel possibly equal an inlined
write to a register? The problem with this thinking, we have come to realize, is
the fact that complexity is conserved. It is true that the OS has been removed.
But the need for thread safety and safe access to shared resources can not be
removed: the support has to go somewhere. That somewhere is the runtime
library, in user mode.

Hence, while it is true that OS bypass has zero overhead in theory, it can
have very high overhead in fact. Programs that use OS bypass always use a
library; the library is usually threaded, with a full complement of locks (and
lockiing bugs and race conditions); OS functions are now in a library. In the
end, we have merely to offer lower overhead than the library.

There are security problems with OS bypass as well. To make OS bypass
work, the kernel must provide interfaces that to some extent break the security
model. On Blue Gene/P, for example, DMA engines are made available to
programs that allow them to overwrite arbitrary parts of memory. On Linux
HPC clusters, Infiniband and other I/O devices are mapped in with mmap, and
users can activate DMAs that can overwrite parts of kernel memory. Indeed,
in spite of the IOMMUs which are supposed to protect memory from badly
behaved user programs, there have been recent BIOS bugs that allowed users
of virtual network interfaces to roam freely over memory above the 4 gigabyte
boundary. Mmap and direct network access are really a means to an end; the
end is low latency bits to the wire, not direct user access. It is so long since the
community has addressed the real issue that means have become confused with
ends.

2 Related work

The most common way to provide low latency device I/O to programs is to
let the programs take over the device. This technique is most commonly used
on graphics devices. Graphics devices are inherently single-user devices, with



multiplexing provided by programs such as the X server. Network interfaces,
by contrast, are usually designed with multiple users in mind. Direct access
requires that the network be dedicated to one program. Multi-program access
is simply impossible with standard networks.

Trying to achieve high performance while preserving multiuser access to a
device has been achieved in only a few ways. In the HPC world, the most
common is to virtualize the network device, such that a single network device
appears to be 16 or 32 or more network devices. The device requires either
a complex hardware design or a microprocessor running a real-time operating
system, as in Infiniband interfaces: thus, the complex, microprocessor-based
interfaces do bypass the main OS, but don’t bypass the on-card OS. These
devices are usually used in the context of virtual machines. Device virtualization
requires hardware changes at every level of the system, including the addition
of a so-called iommu [1].

An older idea is to dynamically generate code as it is needed. For example,
the code to read a certain file can be generated on the fly, bypassing the layers
of software stack. The most known implementaiton of this idea is found in
Synthesis [3]. While the approach is intriguing, it has not proven to be practical,
and the system itself was not widely used.

The remaining way to achieve higher performance is by rigorous optimization
of the kernel. Programmers create hints to the compiler, in every source file,
about the expected behaviour of a branch; locks are removed; the compiler
flags are endlessly tweaked. In the end, this work results in slightly higher
throughput, but the latency – ”bits to the wire” – time changes little if at all.
It is still too slow. Recent experiences shows that very high levels of optimization
can introduce security holes, as was seen when a version of GCC optimized out
all pointer comparisons to NULL.

Surprisingly, there appears to have been little other work in the area. The
mainline users of operating systems do not care; they consider 1 millisecond
BTW to be fine. Those who do care use OS bypass. Hence the current lack of
innovation in the field: the problems are considered to be solved.

The status quo is unacceptable for a number of reasons. Virtualized device
hardware increases costs at every level in the I/O path. Device virtualization
adds a great deal of complexity, which results in bugs and security holes that are
not easily found. The libraries which use these devices have taken on many of
the attributes of an operating system, with threading, cache- and page-aligned
resource allocation, and failure and interrupt management. Multiple applica-
tions using multiple virtual network interfaces end up doing the same work, with
the same libraries, resulting in increased memory cost, higher power consump-
tion, and a general waste of resources all around. In the end, the applications
can not do as good a job as the kernel, as they are not running in priveleged
mode. Applications and libraries do not have access to virtual to physical page
mappings, for example, and as a result they can not optimize memory layout
as the kernel code.



3 Our Approach

Our approach is a modification of the Synthesis approach. We do create curried
functions with optimized I/O paths, but we do not generate code on the fly;
curried functions are written ahead of time and compiled with the kernel, and
only for some drivers, not all. The decision on whether to provide curried
functions is determined by the driver writer.

At run time, if access to the curried function is requested by a program, the
kernel pre-evaluates and pre-validates arguments and sets up the parameters for
the driver-provided curried function. The curried function is made available to
the user program as a private system call, i.e. the process structure for that
one program is extended to hold the new system call number and parameters
for the system call. Thus, instead of actually synthesizing code at runtime,
we augment the process structure so as to connect individual user processes to
curried functions which are already written.

We have achieved sub-microsecond system call performance with these two
changes. The impact of the changes on the kernel code is quite minor.

We will first digress into the nature of Curry functions, describe our changes
to the kernel and, finally discuss the performance improvements we have seen.

3.1 Currying

The technique we are using is well known in mathematical circles, and is called
currying. We will illustrate it by an example.

Given a function of two variables, f (x, y) = y/x, one may create a new
function, g (x), if y is known, such that g (x) = f (x, y). For example, if y is
known to be 2, the function g might be g (x) = f (x, 2).

We are interested in applying this idea to two key system calls: read and
write. Each takes a file descriptor, a pointer, a length, and an offset. In the
case of the Plan 9 kernel, we had used a kernel trace device and observed the
behavior of programs. Most programs:

• Used less than 32 distinct pages when passing data to system calls

• Opened a few files and used them for the life of the program

• Did very small I/O operations

We also learned that the bulk of the time for basic device I/O with very
small write sizes – the type of operation common to collective operations – was
taken up in two functions: the one that validated an open file descriptor, and
the one that validated an I/O address.

The application of currying was obvious: given a program which is calling
a kernel function read or write function: f (fd, address, size), with the same
file descriptor and same address, we ought to be able to make a new function:
g (size) = f (fd, address, size), or even g () = f (fd, address, size).

Tracing indicated that we could greatly reduce the overhead. Even on an 800
Mhz. Power PC, we could potentially get to 700 nanoseconds. This compares



very favorably with the 125 ns it takes the hardware to actually perform the
global barrier.

3.2 Connecting curry support to user processes

The integration of curried code into the kernel is a problem. Dynamic code
generation looks more like a security hole than a solution.

Instead, we extended the kernel in a few key ways:

• extend the process structure to contain a private system call array, used
for fastpath system calls

• extend the system call code to use the private system call array when it
is passed an out-of-range system call number

• extend the driver to accept a fastpath command, with parameters, and to
create the curried system call

• extend the driver to provide the curried function. The function takes no
arguments, and uses pre-validated arguments from the private system call
entry structure

4 Implementation of private system calls on Plan 9
BG/P

To test the potential speeds of using private system calls, a system was imple-
mented to allow fast writes to the barrier network, specifically for global OR
operations, which are provided through /dev/gib0intr. The barrier network is
particularly attractive due to its extreme simplicity: the write for a global OR
requires that we write to a Device Control Register, a single instruction, which
in turn controls a wire connected to the CPU. Thus, it was easy to implement
an optimized path to the write on a per-process basis.

The modifications described here were made to a branch of the Plan 9 BG/P
kernel. This kernel differed from the one being used by other Plan 9 BG/P
developers only in that its portable incref and decref functions had been
redefined to be architecture-specific, a simple change to allow faster performance
through processor-specific customizations. In other words, we are comparing our
curried function support to an already-optimized kernel.

First, the data structure for holding fast system call data was defined in
the /sys/src/9k/port/portdat.h file (from this point on, kernel files will be
assumed to reside under /sys/src/9k/, thus port/portdat.h).

In the same file, the proc struct was modified to include the following dec-
larations:

/* Array of private system calls */

Fastcall *fc;



/* Our special fast system call struct */

struct Fastcall {

/* The system call number */

int scnum;

/* A communications endpoint */

Chan *c;

/* The handler function */

long (*fun)(Chan*, void*, long);

void *buf;

long n;

};

Figure 1: Fast system call struct

int cfd, gdf, scnum=256;

char area[1], cmd[256];

gfd = open("/dev/gib", ORDWR);

cfd = open("/dev/gib0ctl", OWRITE);

cmd = smprint("fastwrite %d %d 0x%p %d", scnum, fd, area, sizeof(area));

write(cfd, cmd, strlen(cmd));

close(cfd);

docall(scnum);

Figure 2: Sample code to set up a fastpath systemcall

/* # private system calls */

int fcount;

Programs are required to provide a system call number, a file descriptor,
pointer, and length. It may seem odd that the program must provide a system
call number. However, we did not see an obvious way to return the system
call number if the system chose it. We also realized that it is more consistent
with the rest of the system to have the client choose an identifier. That is how
9P works: clients choose the file identifier when a file is accessed. Note that,
because the Plan 9 system call interface has only two functions which can do
I/O, the Fastcall structure we defined above covers all possible I/O operations.
The contrast with modern Unix systems is dramatic.

Next, we modified the Blue Gene barrier device, bgp/devgib.c, to accept
fastwrite as a command when written to /dev/gib0ctl. When the command
is written, the kernel allocates a new Fastcall in the fc array, using a user-
provided system call number and a channel pointing to the barrier network,
then sets (*fun) to point to the gibfastwrite function and finally increments
fcount. The code to set up the fast path is shown in Figure 2.

Following the write, scnum contains a number for a private system call to
write to the barrier network. From there, a simple assembly function (here



TEXT docall(SB), 1, $0

SYSCALL

RETURN

Figure 3: User-defined system call code for Power PC

called docall) may be used to perform the actual private system call. The code
is shown in Figure 3.

When a system call interrupt is generated, the kernel typically checks if the
system call number matches one of the standard calls; if there is a match, it
calls the appropriate handler, otherwise it gives an error. However, the kernel
now also checks the user process’s fc array and calls the given (*fun) function
call if a matching private call exists. In the case of the barrier device, it calls
gibfastwrite, which writes ’1’ to the Device Control Register. The fastcall
avoids several layers of generic code and argument checking, allowing for a far
faster write.

5 Results

In order to test the private system call, we wrote a short C program to request a
fast write for the barrier. It performs the fastpath setup as shown above. Then,
it calls it calls the private system call. The private system call is executed many
times and timed to find an average cost per call. As a baseline, the traditional
write call was also tested using a similar procedure.

We achived our goal of sub-microsecond bits to the wire. With the traditional
write path, it took approximately 3,000 cycles per write. Since the BG/P uses
850 MHz PowerPC processors, this means a normal write takes approximately
3.529 microseconds. However, when using the private system calls, it only takes
around 620 cycles to do a write, or 0.729 microseconds. The overall speedup
is 4.83. The result is a potential ping-pong performance of slightly under 3
microseconds, which is competitive wth the best OS bypass performance.

6 Conclusions and Future Work

Runtime systems for supercomputers have been stuck in a box for 20 years. The
penalty for using the operating system was so high that programmers developed
OS bypass software to get around the OS. The result was the creation of OS
software above the operating system boundary. Operating systems have been
recreated as user libraries. Frequently, the performance of OS bypass is cited
without taking into account the high overhead of these user-level operating
systems.

This paper shows an alternative to the false choice of slow operating systems
paths or fast user-level operating systems paths. It is possible to use a general-



purpose operating system for I/O and still achieve high performance.
We have managed the write side of the fastcall path. What remains is to im-

prove the read side. The read side may include an interrupt, which complicates
the issue a bit. We are going to need to provide a similar reduction in overhead
for interrupts.

We have started to look at curried pipes. Initial performance is not very
good, because the overhead of the Plan 9 kernel queues is so high. It is probably
time to re-examine the structure of that code in the kernel, and provide a faster
path for short blocks of data.

Our goal, in the end, is to show that IPC from a program to a user level file
server can be competitive with in-kernel file servers. Achieving this goal would
help improve the performance of file servers on Plan 9.
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